ZAXIS-5G series Clamshell Telescopic Arm

HITACHI

Reliable solutions

CLAMSHELL TELESCOPIC ARM

Model Code	ZX330LC-5G
Engine Rated Power	184 kW (246 HP)
Operating Weight	42 050 kg

Productive Deep-Digging Excavator with Clamshell **Telescopic Arm**

The clamshell telescopic arm allows the ZAXIS-5 excavator to dig deep underground, down to a depth of 25 m, and to load a truck with a short cycle time, increasing uptime and production.

Specialty Excavator for Deep Excavation with High Uptime and Production

Clamshell Telescopic Arm

The clamshell telescopic arm gives dynamic actions for productive underground excavation by a combination of ropes and hydraulic cylinders.

Bucket capacity: 1.30 m³ Digging depth: 25.0 m

Sliding Cab

The cab on the clamshell telescopic arm excavator is positioned 960 mm forward, compared to the Hitachi standard model, to allow the operator to look down deep excavation from the operator's seat for confident excavation. The cab can further slide 1 300 mm, shifting 2 260 mm forward in total, at the operator's command for better downward visibility.

For safety, a sliding prevention switch is provided to prevent the cab from inadvertent movements. A walkway and handrail are deployed for easy access to the cab.

Sliding stroke distance: 1 300 mm

Counterweights Specifications

Two types of counterweights, a standard heavier type and an optional put-on type, are available.

The standard heavier type counterweight is designed for exclusive use with the clamshell telescopic arm to increase machine stability.

The put-on type counterweight can also reduce rear-end swing radius of the machine by 100 mm to increase work efficiency in narrow area.

Rear-end swing radius

Standard heavier type: 3 690 mm Optional put-on type: 3 590 mm

Twin-Rope System

The twin-rope system makes the machine safe further. Even if one of the twin ropes breaks accidentally, the other can hold the telescopic arm in position.

- ZAXIS Empower your Vision. -

High Levels of Performance with Advanced Sturdy Mechanisms

The Hitachi ZAXIS-5 excavator with the clamshell telescopic arm is purpose-designed for efficient, productive deep excavation using numerous advanced mechanisms. The Hitachi clamshell telescopic arm excavator is your dependable partner to provide solutions to tough underground excavation projects.

Large Window at Cab Floor

The cab floor has a large polycarbonate window through which the operator can clearly look down deep underground excavation, allowing efficient, safe positioning and excavation using the clamshell telescopic arm.

Openable Telescopic Arm Top Cover

The telescopic arm top cover is openable for easy checks and servicing, resulting in high uptime and easy repairs, including quick rope replacement.

Extended Rope Life

The newly designed telescopic arm can significantly extend the service life of ropes.

Rope replacement intervals: 1 800 hours

Note: Rope replacement intervals vary according to operating conditions.

Array of Safety Devices

There are an array of safety devices, including warning lights and safety alarm. If one of the twin ropes breaks accidently or extends excessively, warning lights turn on, and a safety alarm sounds to alert the operator.

If the clamshell is overloaded when it reaches the ground or when it digs underground, warning lights alert the operator.

Free-Fall Prevention Devices

Holding Valve

Even if piping or hose punctures, the clamshell is held to prevent its free fall by a combination of telescopic arm cylinder and a holding valve on the boom cylinder.

Free-Fall Prevention Device

The clamshell is driven by two lines: pull-up ropes and pressdown ropes. Even if one of the two ropes breaks, the other works to prevent the clamshell from free fall, keeping the bucket in position for dependable deep excavation.

SPECIFICATIONS

ZX330LC-5G

ENGINE	
Model	Isuzu AA-6HK1X
Туре	4-cycle water-cooled, direct injection
Aspiration	Turbocharged, intercooled
No. of cylinders	6
Rated power	
ISO 9249, net	184 kW (246 HP) at 2 000 min-1 (rpm)
SAE J1349, net	184 kW (246 HP) at 2 000 min-1 (rpm)
Maximum torque	873 Nm (89.0 kgfm) at 1 700 min-1 (rpm)
Piston displacement .	7.790 L
Bore and stroke	115 mm x 125 mm
Batteries	2 x 12 V / 128 Ah

HYDRAULIC SYSTEM

Hydraulic Pumps

2 variable displacement axial piston pumps
2 x 279 L/min
1 gear pump
32.8 L/min

Hydraulic Motors

Fravel	2 variable displacement axial piston motors
Swing	1 axial piston motor

Relief Valve Settings

Implement circuit	34.3 MPa (350 kgf/cm ²)
Swing circuit	32.4 MPa (330 kgf/cm ²)
Travel circuit	34.8 MPa (360 kgf/cm ²)
Pilot circuit	3.9 MPa (40 kgf/cm ²)
Power boost	38.0 MPa (390 kgf/cm ²)

Hydraulic Cylinders

High-strength piston rods and tubes. Cylinder cushion mechanisms provided in boom cylinders to absorb shock at stroke ends.

Hydraulic Filters

Hydraulic circuits use high-quality hydraulic filters. A suction filter is incorporated in the suction line, and full-flow filters in the return line and swing/travel motor drain lines.

CONTROLS

UPPERSTRUCTURE

Revolving Frame

D-section frame skirt for resistance to deformation.

Swing Device

Axial piston motor with planetary reduction gear is bathed in oil. Swing circle is single-row. Swing parking brake is spring-set/hydraulic-released disc type.

 Swing speed
 10.7 min⁻¹ (rpm)

 Swing torque
 120 kNm (12 200 kgfm)

Operator's Cab

Independent spacious cab, 1 005 mm wide by 1 675 mm high, conforming to ISO* Standards. * International Organization for Standadization

UNDERCARRIAGE

Tracks

Heat-treated connecting pins with dirt seals. Hydraulic (grease) track adjusters with shock-absorbing recoil springs.

Numbers of Rollers and Shoes on Each Side

Upper rollers	2
Lower rollers	8
Track shoes	48
Track guards	3

Travel Device

Maximum traction force .. 298 kN (30 400 kgf)

Gradeability 26% (15 degree) continuous

WEIGHTS AND GROUND PRESSURE

Equipped with type S-TC300R-7 and 1.30 m³ clamshell bucket (SAE, PCSA heaped).

Shoe type	Shoe width	Operating weight	Ground pressure
Triple grouser	600 mm	42 050 kg	79 kPa (0.81 kgf/cm ²)

SERVICE REFILL CAPACITIES

Fuel tank	
Engine coolant	
Engine oil	
Swing device	15.7 L
Travel device (each side)	
Hydraulic system	
Hydraulic oil tank	

CLAMSHELL BUCKET

Bucket type		S-SP130
Bucket capacity	m ³	1.30
Max. digging force	kN (kgf)	79.4 (8 100)
Max. height	mm	2 960
Opend max. height	mm	2 650
Closed width	mm	2 030
Opend width	mm	2 320
Bucket width	mm	1 230
Number of teeth		9
Weight	kg	1 960

SPECIFICATIONS

ZX330LC-5G

WORKING RANGES

	Unit: mm
Telescopic arm type	S-TC300R-7
Telescopic arm system	Hydraulic cylinder + wire rope
A Max. vertical digging depth	25 000
B Radius at max. vertical digging depth	6 640
C Max. vertical digging radius	8 400
D Depth at max. vertical digging radius	20 510
E Max. working radius	11 170
F Max. dumping height	5 570
G Min. front swing radius	5 300
H Height at min. front swing radius	15 660
I Cab sliding distance	1 300

		M	0		<u>)</u> •
	Distance between tumblers				
А	Distance between tumblers				
A B	Undercarriage length				
A B *C	Undercarriage length Counterweight clearance				
A B *C D	Undercarriage length Counterweight clearance Rear-end swing radius				
A B *C D E	Undercarriage length Counterweight clearance Rear-end swing radius Overall width of upperstructure				
A B *C D E F	Undercarriage length Counterweight clearance Rear-end swing radius Overall width of upperstructure Overall height of cab				
A B *C D E F *G	Undercarriage length Counterweight clearance Rear-end swing radius Overall width of upperstructure Overall height of cab Min. ground clearance				
A B *C D E F *G H	Undercarriage length Counterweight clearance Rear-end swing radius Overall width of upperstructure Overall height of cab Min. ground clearance Track gauge				
A B *C D E F *G H I	Undercarriage length Counterweight clearance Rear-end swing radius Overall width of upperstructure Overall height of cab Min. ground clearance Track gauge Track shoe width				
A B *C D E F *G H I J	Undercarriage length Counterweight clearance Rear-end swing radius Overall width of upperstructure Overall height of cab Min. ground clearance Track gauge Track shoe width Undercarriage width				
A B *C D E F *G H I J K	Undercarriage length Counterweight clearance Rear-end swing radius Overall width of upperstructure Overall height of cab Min. ground clearance Track gauge Track shoe width Undercarriage width Overall width				
A B *C D E F *G H I J K L	Undercarriage length Counterweight clearance Rear-end swing radius Overall width of upperstructure Overall height of cab Min. ground clearance Track gauge Track shoe width Undercarriage width Overall width Overall length				
A B C D E F G H I J K L M	Undercarriage length Counterweight clearance Rear-end swing radius Overall width of upperstructure Overall height of cab Min. ground clearance Track gauge Track shoe width Undercarriage width Overall width Overall length Overall height of boom				
A B *C D E *G H I J K L M N	Undercarriage length Counterweight clearance Rear-end swing radius Overall width of upperstructure Overall height of cab Min. ground clearance Track gauge Track shoe width Undercarriage width Overall width Overall length Overall height of boom Track height with tiple grouser shoes				

TRANSPORTATION

12 130

7

Unit: mm

Counterweight Width : 2 950 mm Weight : 10 400 kg

2 320

Unit: mm

Width: 1 230 mm Weight: 1 960 kg

Hitachi Environmental Vision 2025

The Hitachi Group released the Environmental Vision 2025 to curb annual carbon dioxide emissions. The Group is committed to global production while reducing environmental impact in life cycles of all products, and realizing a sustainable society by tackling three goals — prevention of global warming, conservation of resources, and preservation of ecosystem.

Reducing Environmental Impact by New ZAXIS

Hitachi makes a green way to cut carbon emissions for global warming prevention according to LCA*. New ZAXIS utilizes lots of technological advances, including the new ECO mode, and Isochronous Control. Hitachi has long been committed to recycling of components, such as aluminum parts in radiators and oil cooler. Resin parts are marked for recycling. *Life Cycle Assessment – ISO 14040

These specifications are subject to change without notice. Illustrations and photos show the standard models, and may or may not include optional equipment, accessories, and all standard equipment with some differences in color and features. Before use, read and understand the Operator's Manual for proper operation.

Hitachi Construction Machinery Co., Ltd. www.hitachi-c-m.com

and legal requirements. If not so, please make modifications accordingly.

KA-EN145